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REPORT No. 311

AERODYNAMIC THEORY AND TEST OF STRUT FORMS
By R. H. Smite
PART 1!

SUMMARY

This report, submitled to the National Advisory Commiltee for Aeronautics for publication,
presents the whole study under this title in two parts, only the first of which 18 reported here. In
this part the symmetrical inviscid flow about an empirical strut of high service merit is found by
both the Rankine and the Joukowsky methods. The results can be made to agree as closely as wished.
Theoretical stream surfaces as well as surfaces of constant speed and pressure in the fluid about the
strut are found. The surface pressure computed from the two theories agrees well with the measured
pressure on the fore part of the model but not so well on the after part. From the theoretical flow
speed the surface friction 1s computed by an empirical formula. The drag integrated from the frie-
tion and measured pressure closely equals the whole measured drag. As the pressure drag and the
whole drag are accurately determined, the friction formula also appears trustworthy for such fair
shapes.

? INTRODUCTION

The mathematical treatment of symmetrical flow past symmetrical bodies, which are
streamlined for low resistance, is directed toward the solution of one of two general problems.
Either one seeks to determine the nonviscous flow past forms whose rooting ? is specified but
final shape unknown, or sbout those whose final shape is specified and rooting unknown. The
latter, being the inversion of the other, may be called the inverse problem, while the former
may be called the direct problem. Almost all of the theorstical investigation on fluid flow past
such shapes has been devoted to forms of fixed rooting, although they are, technically at least,
the less important of the two. This partiality to the direct problem results from the fact that
it naturally runs along with, while the other runs counter to, a mathematical development which
is practically irreversible; that is, one which can be followed in the reverse direction only with
the greatest difficulty.

Following logically the theory of fluid motion, the direct problem was successfully studied
early, in the case of poorer forms of simple origin, in both two and three dimensions. The
method was that due to Rankine, in which sources and sinks of equal total strength are imagined
created along a streamline of a uniform stream of fluid, and the separate streams, each flowing
as if alone, combined by superposition. (References 1, 2, and 3.) The closed surface of sepa-
ration between the sourcesink and the external streams is then made the surface of a solid
body. The substitution of this body for the source-sink flow leaves the external stream un-
changed since (in & nonviscous fluid) the inner flow and the body produce the same boundary
conditions at the surface of separation. Since the external stream is known from the super-
position of the flows before the substitution, the flow about the body is known.

Such surfaces of separation for water, suitable as forms for surface ships, have since been
derived graphically by Taylor (References 8 and 4) and Mec¢Entee (Reference 5) by assuming
more complicated source-sink combinations. These forms are made long and narrow with

1 This part was submitted in May, 1628, to the Johns Hopkins University in conformity with the requirements for the M. A. degree. The
second part will be completed and the whole submitted in 1829 in conformity with the requirements for the Ph. D. degree.

1 By rooting fs meant the premises which fix the form of the body, namely, the arrangement of the soarces and sinks in the Rankine theory
ar of the complex poles In the Jounkowskl theory.

127



128 REPORT NATIONAL ADVISORY COMBITTEE FQR AERONAUTICS

sharp, or sharply rounded, bows and sterns, in order to reduce the wave-making and inertia
forces which together are large compared to the viscous forces. - Because of their large surfaces
such forms are not suited, however, for deep submersion in either water or air, where the viscous
forces predominate.

While the development of deep-sea. shapes of least drag has been very little studied because
of their lack of utility, the practical need for minimum resistance air forms has led to a large
amount of experimentation on empirical and, to & much less extent, on theoretical streamline
forms. An important experiment on theoretical airgship forms was made by G. Fuhrmann in
1912. (Reference 6.) Using Taylor’s graphical method, he derived six beautifully streamlined
separation surfaces of revolution, and showed the agreement between the surface pressures
about them as computed and as experimentally measured. The. 2-dimensional sequel to
Fuhrmeann’s work is the subject of Part II of this general study, and was suggested to me by
Dr. A. F. Zshm ss suitable for & thesis, - .

In two dimensions, the direct problem can be treated also by the method of conformal
transformation. An extensive literature has been built up during the last few years on the
development-of Joukowski and kindred airfoils by this method. (References 7, 8, 9, 10, 11,
and 12.) The corresponding development of symmetrical shapes suitable for struts, however, '
has been little studied although the strut derivatives of Joukowski profiles are more easily
obtained and are more like successful service forms. - A Joukowski strut of high merit is developed
in the present study, and the theoretical and expenmental flows about it are compared.

The inverse problem, in which _the final shape is specified, has been undertaken in only
one investigation. (Reference 14.) Von Karman found the flow past arbitrary half bodies of
revolution, and then past an airship, whose shape was specified, by forming its bow and stern
of two half bodies, cut to the correct length, and joining them. Certain approximations and
assumptions incident to the splicing were made and investigated. While they shorten a very
long problem until it is practically solvable, these approximations destroy much of the math-
ematical elegance and exactness of the method.

Since Von Karmean’s method is an important theoretical and technical advance, it has been
thought worth while to carry through, at least once; the laborious task of extending it rigorously
to an arbitrary whole body. The body chosen was the United States Navy Number 2 strut, whose
form is empirical and whose service merit (Reference 13) is unexcelled. This investigation,
together with that of the Joukowski strut-referred to, which differs from the Navy Number 2
only at the extreme trailing edge, gives two independent-developments of the theoretical flow
about this strut. The two theoretical flows are finally compared with the experimental flow
found by measuring the pressure over the strut surfeces, The Von Karman and Joukowski
strut studies constitute Part I of the whole investigation.

Whether we. consider the problem of solvmg the flow about a strut of fixed ﬁna] {form or
of fixed rooting, the mathematical treatment i is possible only when viscosity is neglected. Under
usuel conditions, it is well established that fluids, like air and water, stick without slipping to
the surface of the body past which they flow, and that the retardation of the near-by fluid
takes place in a thin layer called the boundary layer. In this layer the viscous forces are of the
same order of magnitude as the inertia forces and lead to the formation of vortices when the
retardation is sufficient to cause a reverse flow.. (References 15 and 16.) Such sufficient
retardations always occur in the immediate wake of conventional streamline bodies, particularly
if their trailing parts are blunt. The surface line dividing the upstream region of nonreverse
flow and the downstream region of reverse flow, is called the line of separation. The shifting
of this line with change of air speed, in the case of some forms, is one cause for the variation
of the resistance coefficient with Reynolds Number. The line of separation for easy shapes is
never far from the aftmost point of the body and shifts most for those with rounded tails. For
well streamlined bodies with sharp tails or trailing edges, the line of separation is sometimes
stationary for a considerable range of Reynolds Number. Such forms produce a stable flow
whose pattern is fixed and have & very low resistance, most of which is found to be due to
viscous friction. They represent the optimum easy forms and are the most interesting from
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the practical, as well as from the theoretical, point of new The struts con51dered here are
bodies of this class.

THE SOURCE-SINK ENVELOPE APPROXIMATING THE UNITED STATES NAVY NUMBER 2 STRUT

v b —_———U
/qw - rj‘f k x
e O =ty
FIGTRE 1

At any point p on the separation line (fig. 1) inclosing a source-sink system in a pIane
stream U, clearly the stream function is

¥p=0=Ty—2%2¢ (1)

where @ is the strength of any souree or sink and ¢, the angle as shown. The condition of
closure, viz, that the @ flow shall stay inside the line, is
=Q=0 ' (2)
Hence, if y, o are glven for enough points p, equations (1), (2) determine the @’s that condition
the given closure line in the glven stream. Let the closure hne be the section of the United
States Navy Number 2 strut in the plane stream U.
Equation (1) is true, in two dimensions, for any type or distribution of sources and sinks.
It will be convenient to assume line sources and sinks which rub in the strut plane of symmetry
parallel to the strut length, and located on the ordinates by which the strut is specified. Thera
will then be 7 sources and sinks and n equations of type (1), for n ordinates. To meet the con~

- dition of closure, equation (2) is added and another source or sink, making in all n+1 sources =

and sinks and n+1 equatmns

Since its curvature is important, a streamline form can not be specified hy fewer than 10
or 12 ordinates judiciously chosen. In this study, 12 coordinates are used to fix the form, and
one coordinate added_at the stern to fix the position of the thirteenth source or sink. A The
coordinates for the United States Navy Number 2 strut, multiplied by 2, (fig. 2) are as follows:

p T Y v/ L - Y D &L Yy
0 0 0 - 5 2.600 2.360. 10 16.800 1.700
1 .200 .880 6 4.200 2,751 11 18.400 1.202
2 .600 1.200 7 7.200 3.000 .12 20.000 .570
3 1.000 1.551 8 10.400 2.920 13 20.500 .290
4 1.600 1.918 9 13.600 2.418 14 21,000 O

H 5 6 7=p 8 9

1, For 2 IEB

2345 6 7k & & 10 i 2B

Ficure 2
_ 3.000
Hence, the value of ¢y, for example, is ¢z =r—tan™! 750—260 -7 0.578 = 1+ 2.564. IJLemse

the value of ¢ is found to be ¢ =tan™ T:%%')Z_‘)ﬁ +0.438. After substituting the numerical
values for the coefficients and unity for the value of U, the constants of equations (1) and (2)
take the form given in Table I.

There is nothing new, and very little of interest, in the way this system of linear equations
has been solved. The solution was accomplished in steps, each of which reduced the number
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both of equations and of unknowns by one. After each reduction the new equations were
rearranged so that the next reduction could be made by using factors of the order of unity.
For example, the first reduction was made by eliminating column 2, Table I, by multiplying
the second row by —0.9624, and adding the result to the first row, then by multiplying the third
row by —0.6614 and adding to the second row, and so on down the column. The new set, so
obtained, contains no @, column, and has only 12 rows. These rows were rearranged for the
next reduction in the order 1, 12, 10, 8, 7, 5, 3, 2, 4, 6, 9, 11, and multiplied, as before, by the
proper factors to eliminate column 7. Carrying through this process to the end involves almost
prohibitive work., Ways {o save labor.and chance of error by proper tabulstion are obvious,
however, and success depends principally on how well they are used. Numbers of seven places
or more must be carried throughout, which increases considerably the chance of error. Table
I is given here reduced from seven places to four places for brevity. The solution of this set™
of 13 equations was found tobe

Q.=+ 1.6650. @s=+7.0804 . = Q,=-—3.3078
Qs=—-5.8767 Qo= —2.1855 Qio=— .1097
Qs= +13.0072 Q=+ .8824 Q1= —3. 2608
Qi=— 5.8817 CQs=—1.2550"" . @a=+1.0123

Q3= —1.7202

Figure 3 shows graphically the distribution and the relative strengths of the sources and sinks
along the chord of the strut profile. A positive @ is a source, a negative one a sink, by defini-

F1aURE 8.—The distribution and relstive strengths of sources and sinks whose sepa-
ration surface In a unft siream is indistinguishable tmm the United States Navy
No. 2 strut

tion, hence there are five sources and eight sinks, the squrces predominating at the bow and the

sinks at the stern.

It is relatively easy to find the components of ve]ocuty and the pressure at—each surface
point p, from the known strengths and positions of the sources and sinks. The stream function
Uiy, &b 0ach point p, due to the &'* source or sink, is simply

3 -
'I/kp = 2_7; Prp
and the radial velocity ¢, ,, simply

where 7, =[(x,—2:)*+1,1"2. The cartesian components of q,, are

Q (mp—mg Qkyn

F 2” 2 ut’

which become, when summed for all sources and sinks,

1 -
Uy = ﬂz?Qk(% —2) . o 3)

Qs __ﬁ;_ - : -
p 21‘2?1'k’ - . (4)
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The velocity Up of the uniform stream must be added to u, giving

g =[(To+u,)t +o,7T" &
for the resultant velocity of p. Then the pressure p, 2t p, above the stream pressure, is
2y=p: (1- %) ®)

where p, is the dynamic pressure, 4 pUs?, of the distant stream and p, is in terms of po as a
unit.

Table II gives the values of %,, v,, ¢;, and p, derived from equations (3), (4), (5), and (6)
for the United States Navy Number 2 strut. The values of the point pressure p, are shown
plotted against the strut width in Figure 4 and sgainst its half thickness in Figure 5. The

p“ - .00 1
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O Raorkine
X Experimental
507
go
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-50
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F16URE 4.—Curves of point pressure, p/ps over surface of Navy No. 2 strut from
experiment and from Rankine and Joukowski theories
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F1GURE 5.—Point pressure versus struot half thlcknessfor experiment and
theory. Ths Joukowski and Rankine theoretical curves colncide
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integrated pressural drag is clearly proportional to the difference between the areas ¢ b g ¢ f
and g ¢ g of the theoretical curve (fig. 5), which is found to be zero when the two areas are
planimetered The theoretical resistence of this empirical strut is, therefore, zero. Figures 4
and 5 also give the point pressures found by measurement and by the Joukowski theory, which
will be explained presently.

The calculation of the streamlines and velocity distribution afield would be long, but not
difficult; by use of equations (3) to (6). They are more easily found when the strut is con-
sidered as a Joukowski profile. These extensions of the development of the flow about the
strut will, therefore, be left for the Joukowski treatment, now to be considered.

THE JOUKOWSKI STRUT WHOSE FORM APPROXIMATES THE UNITED STATES NAYY NO. 2

The. method of finding wing and other streamline forms by a conformal transformation of
circular and elliptic cylinders is due to Joukowski and later to Mises, Betz, Muller, Witoszynski,
and others. (References 7, 8, 9, 10, 11, 12.)  Strictly speaking, the Joukowski profiles are
those of simple 2-pole origin with upper and lower lines forming & cusp at the trailing edge.
These profiles were soon extended by his followers, in an effort to derive more practical wings,
to forms of multi-pole origin and to those whose upper and lower surfaces intersect at a small
angle at the trailing edge.

The general theory of conformal transformation of plane flow has been well worked out in
the wing studies cited, and will not be considered herp, except to mention two theorems. The
law of Riemann, in the theory of functions, states that there is a circle and surrounding potential
field into which one can transform any simple holomorphic contour and surrounding potential
field so that the field at infinity remains unchanged. Then, more recently, the theorem of
Bieberbach, which states that there is one, and only one, func’uon for thls transformation,
namely,

;=z+;‘+z—2+;§+- P _ Q]

in which { =#+1» are the coordinates in the { plane of the circle and z=a+ 1y are the coordinates
in the 2 plane of the contour. These theorems apply, naturally, only in two dimensions.
Equation (7) may be written :

£ (-9(-26-9- -

where ¢, are the complex poles of the transformation, and Z ¢,=0. The Joukowski solution
of the inverse problem, viz, of transforming a circle and flow field to a given profile with corre-
sponding field, reduces to the task of finding the ¢, or the a, complex coefficients in these equa-
tions. The direct problem, on the other hand, begins with these given in the premises, and
has been studied, with some difficulty, up to five poles. (Reference 11.) It would be sur-
prising if fewer than this number were sufficient to fix satisfactorily the transformation of &
circle to an arbitrary streamline form. The theory in its present state gives M practical way
to determine even five poles which would produce roughly a specified form. The Joukowski
method, therefore, gives no solution yet of the inverse problem. One must resort to a fit and
try method to find a Joukowski strut that coincides with one arbitrarily chosen and be satis-
fied with a good approximation. This method will be used to find the Joukowski strut that
approximates the United States Navy Number 2.~

In carrying out this approximation & modified Joukowski profile will be used, but bafore
considering the profile it may be well to summarize briefly that part of the Joukowski theory
which applies to symmetrical flow. The theory begins with the very old transformation by
which & circle of radius b is flattened into a straight line whose length is 4b. The transformation
formula is the simple 2-pole equation

b’ - - o
,_.=;+?__ e (9)
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which decomposes into two equations,
. . b’ _
=#1 A
’ E< e (10)
b!
y=r1-ggp q')

The same transformation flattens circles, concentric with the map circle r=35, into ellipses and
distorts their radii into hyperbolas, the ellipses and hyperbolas being focused at the ends of
the line 45, Figure 6.

FiaURE 6.—Conformal transformation of
map circle, r=4, and its potential field
{nto the straight line 4b and its potential
fiald :

For a uniform stream crossing & solid cylinder »=3, the streamlines, ¥;=const. graded
from the circle r=5, in the ¢ plane, become transformed into straight parallel lines graded from
the line 4b in the z plane, and the curves ¢r=const. become striaght lines orthogonsl to them,
the two sets of lines forming together an ordinary cartesian network. The said flow about the

circular cylinder »=>, is thus transformed into the flow past & flat plane lying along the general

stream.

Fiauax]rs.—Round cylinder, @=2.00, centered at ¢=—0.20 map cylinder,
bw=1.48, transformed into Joukowskl approximation of United States Navy
No. 2 strut, Figure 7b

Similarly, for flow across the solid cylinder >3, the curves y;=const. graded from the
concentric circle r=a>b, in the { plane, become curves ¥, =const. graded from the corresponding
ellipse in the z plane. The flow about the circular cylinder r=a is transformed, in this way,
into the flow about an elliptic cylinder, focused at x=+2b. When the circle r=a is not con-
centric with the map circle, r=>5, but eccentrically centered at £= —c (fig. 7a}, the curve in the
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z plene corresponding to r=a, becomes an ellipse distorted into a more or less streamline strut
form. - (Fig. 7b.) If the shift of the circle r=a along —¢ is sufficient to make ¢=b—a—that
is, to make the circles tangent at-¢=b—the trailing edge of the strut degenerates to a cusp,
and one has & symmetrical Joukowski profile.

Ce—— -

FiGURE Tbh.—Jonkowski epproximation of endless United States Navy No. 2
strut, transformed from endless round eylinder, Figure 78

By trying a number of sizes and positions for the circle r=b, one finds without much diffi-
culty that the map cirele b=1.48, transforms the circle ¢=2.00, centered at £=—0.20 into the
Navy Number 2 strut accurately to within 1% per cent of the maximum ordinate everywhere
except near the extreme trailing edge. The actual agreement is seen in Table III and Figure 8.

FicURE 8,—~Joukewsky approximation to United Sfates Navy
No. 2 strut

This agreement is satisfactory, especially since most, if not all, of the objectionable discrepancy
near the trailing edge, where the Joukowski strut is rounded while the Navy Number 2 con-
tinues to an edge, occurs aft the lines of, separation where the form of the surface is largely
immaterisal.

Having obtained the Joukowski strut, the flow about it is easily found. In general, the
flow about a circular cylinder of radius a is given by the equation

2
srtive= U5 +%) (1)
whose y; component-is _ o
2
b= Ton= % | (12)

When the cylinder is centered at £= —0.20, and has a radius r=a=2.00, equation (12) becomes

- 4 Uy
\ll;— Uo‘r} —m_l_—uo.%jp . (13)

whence the component velocities at any point (£ 4} about the cylinder are

oY (¢4+0.202%—»?
=S v E - a4

o £+0.20
o=~ =8 U1 0 207 ] (15)

In order to find the corresponding components u, and v, about the strut, the lengths of corre-

sponding path segments in the ¢ and z planes must be found. That is, the differential quotient

of 2 and ¢ must be evaluated. Then '
Ur _%_
Uz U
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The evaluation of Ig—;’ is known, and can be easily varified fo be
. dz 1 -
F g @ r by D
Finally, the resultant velocity ¢;, at any point {, about the cylinder is given by
q;g = u;’ + ‘l};z (18)
Likewise the resultant velocity ¢., 8t any point, 2, about the strut is given by
@t =u’+o ' ' ' (19)

The surfaces of constant speed or pressure near the cylinder are easily found analytically,

but those near the strut can not easily be found directly.? In the latter case, the values of ¢, -

must be found aslong a number of closely graded streamlines, and the surfaces of constant g,
found by use of an auxiliary plot of g, for each streamline, first against z and then against y.

The surfaces of constant speed g;, about the cylinder (References (18) and (21)}) may be
found as follows. If the velocity U, of the uniform stream is unity, equation (12), in polar
coordinates, takes the form

¢;=<r—;)sin G} (20)

By differentiation, equation (20) gives the two polar components of velocity,

%ﬂ/{:(l +‘:_—:) sin ¢

21}
ao=<1 —=5 ) cos @ ’
Hence .
q:’=gf2+ga’=<1 +"§)‘2 sin® e+<1 —‘%:)2 cos® 0
or
Go=3 [(@ 1)1~ 40 cos® g]1P (22

From this equation ¢; clearly has the maximum value 2, at the point where G=% and r=a,

and the minimum value, zero, at the rest points =0, =, r=a. Surfaces of constant speed gy,
intermediate between 0 and 2 are shown, plotted from Table IV, in Figure 9a, where those above
the £ axis are for even speeds, those below for even pressures.

One surface of constant speed is of special interest—namely, the surface gr=1—showing
where the speed beyond the cylinder is equal to that of the uniform stream. For this case

= (@2 +7%)2— 4a** cos? § (23)
or
a?+2r2(1—2 cos? /) =0.

Since cos? B=E,—i’—f: equation (23) becomes

a*+2 (’72—?) =Or
from which -

2
%~%=1, where K=%- (24)

1 Surfaces of constant speed and pressure are of practical interest in showing where to place anemometers to indicate, with Jeast correction, the
relativa spead of the strut and the general air siream.
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The surfaces g;= U, are therefore two equilateral hyperbolas with foci airthe ends of the eylinder
diameter which lies along the general stream. (Fig. 9a.)

q; =125

Py =25

FIGURE 9a.~—Lines of constant speed and pressare of perfect flow past end- _
less round cylinder

To find the corresponding surfaces of constant speed near the strut, one must first deter-
mine & number of closely graded streamlines near the cylinder, and the corresponding ones
about the strut. Equation (13) must; therefore, be solved for a number of values of ¥; and the
values ¢ and 7 transformed to x and ¥ by equation (10). Since y; is a cubic in % and only &
quadratic in £, equation (13) is best put in the form, .

i S
£+0.20=19 I—J (> (25)
-1

. L
and solved for & The values & », 2, ¥ of the streamlines useful in finding surfaces of constant

speed about the strut, as well as values of d?' and . the velocities ¢r and g,, are illustrated in

Table V-b, which is for the streamline ¥;=0.01 only The coordinatesof the constant specd
curves taken, as explained, from auxiliary plots of speed versus z and y for each streamline are
given in Table VI, for as many of the even speeds and pressures, used for the cylinder, as exist—
for the strut. Since the maximum speed about-the strut, Table Va, is ¢,=1.37, and the mini-
mum pressure p,= —0.867, the curves ¢,=1.5, 1.75_and p,= —1.00, given for the cyhnder, do

not appear for the strut. The curves for constant, g, intermediate between 0 and 1.37 are”

q‘-/ a-..?."a, b-.50, c=;75 . q:"‘,

e

P'=0 : Pz-'_.-as'ﬂl:‘_- ’ -_P:'U

FIGguRE 9b.—Lines of constant speed and pressure for perfect flow
past United States Kavy No. 2 strut (Joukowsky approximation)
at zero piteh and yaw

shown in Figure 9b, where again those above the x axis are for even speeds, and those below
are for even'pressures. .
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The computed point pressures over the surface of the Joukowski strut are given in Table
Ve, and plotted against strut width in Figure 4, along with the computed pressures for the
Rankine strut and those measured by experiment. The plot of pressure against strut hali-
thickness (fig. 5) coincides with that for the Rankine strut. Hence the theoretical resistance
of the Joukowski strut is zero also.

Normally graded streamlines, ¢ =const., are found about the round cylinder, and then
transformed to those about the strut, by the equations already used to find the surfaces of con-
stant speed. The values computed for these curves are illustrated in Table Ve, which is for
the streamline ¢=0.35 only. A number of evenly graded streamlines are drawn past both the
round cylinder and the strut in Figures 10a and 10b.

fiuld

FicORE 10b.—United States Navy No. 2 sirut (Joukowsky approximation)
fixed {n a boundless nniform stream of inviscid fluld

EXPERIMENTAL INVESTIGATION OF THE UNITED STATES NAYY NUMBER 2 STRUT

The precise measurement of the actual drag of bodies shaped for slight resistance is diffi-
cult, since the drag is so small compared to the genersl proportions of the body, and so sensitive
to any disturbance or tripping of the surface flow. It is still more difficult to determine ex-
perimentally the pressural part of the drag, because it is a small residue of two much larger
quantities, viz, the downstream and upstream pressural forces. The frictional part of the drag,
being the drag minus its pressural part, is therefore the least precisely determined of the three.
For these reasons any experimental measurements of the actual pressure on thick forms of low
resistance, however carefully these forms are made and tested, are likely to be more or less
unsatisfactory when analyzed.

The basic experimental data for the investigation of the actual flow past the United States
Navy Number 2 strut are simply the measurements of the total drag and the point pressures
at 14 positions on the strut surface. (Tables VII and VIIL.}) These data were obtained from
a smooth wooden strut model 3 by 10% by 60 inches faced, where pressures were collected, by
a brass plate carefully fitted and perforated by l-millimeter pressure holes. The ends of the
strut were so shielded that the strut was the equivalent of an equal segment of a strut infinitely
long. The total drag was measured on the serodynamic balance, to which the struft was
attached by prongs which entered the middle of the strut, as explained in Reference 20. The
location of the pressure holes is given in Table VIII. Measurements of drag and pressure
were obtained in the large Navy wind tunnel with the air stream held at five different speeds.
The laboratory equipment for measuring these quantities and the technique of the experiment
will be found clearly discussed in Reference 20, and will not be cons1dered here

14397—30——10
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Figures 4 and 5, in which the measured pressures are plotted against the strut width and
the half thickness, respectively, have already been referred to. In Figure 4 the other four
experimental curves are omitted, namely, those for 20, 30, 40, and 50 miles per hour. How-
ever, for each speed there is a point of full impact pressure ¢, at the nose and two points of zero
pressure at the side, the first at a distance of 3.3 per cent of the strut width from the front,
and the second at a distance of 87.1 per cent. The corresponding theoretical values are 3.1
per cent for the first, and 92.1 per cent for the second. At about one-fifth of the width from
the leading edge occurs the maximum suction which equals about four-fifths of the nose pressure
g. The maximum theoretical suction occurs at the same place but is larger, being about seven-
eighths of the nose pressure, At the trailing edge the experimental pressure is about one-sixth g,
while the theoretical pressure there is ¢. Throughout most of the suction range the experi-
mental suctions are uniformly less than the theoretical by about one-tenth ¢. As may be seen
from the data, the pressure at each hole varies nesarly as the square of the speed, but with a
degree of approximation slightly diminishing aft of the thickest part of the strut and more pro-
nouncedly at the lower speeds. That this is even approximately true near the trailing edge
indicates that the line of separation moves only slightly, if at all, throughout the speed range
covered. This invariance of flow pattern with air spced is also shown by the fact that the
rear zero pressure line does not shift along the surface of the strut as the speed is varied. This
contrasts with the results obtained on a 2 by 8 inch elliptical cylinder (Reference 20), which
hes & shifting rear zero-pressure point and a varying flow pattern near the trailing edge.

One must turn to Figure 5 to find the consequence of the variation of the experimental
point pressures from the theoretical. In this figure the integrals of the segments of the pressure
graphs give the elements of pressural drag and their sum gives the resultant-pressural drag.
We have already seen that this sum is zera for the theoretical curve. The elements of pressural
drag are given both separately and summed for both theory and experiment im Table IX.
The lower part of the table is of special interest-as showing the relation of the drag to its pres-
sural and frictional parts, and the relation of the pressural drag to its four upstream and down-
stream parts* At 60 miles per hour air speed, the integral experimental pressures exert—an
upstream force of _0.6383 pound, and a downstream force of 0.7012 pound per foot of strut
length. The resultant pressural drag D,, is therefore 0.0629 pound per foot. Since the meas-
ured drag at this speed is 0.1748 pound, the frictional drag is 0.1119 pound, being the drag
minus its pressural part. The order of graphic integration, used to find the force /p d y over
the various portions of the strut surface, for 1-foot length of strut, is detailed at the bottom
of Table IX. B o ' _

We have just seen that the measured drag exceeds the resultant-force of the integrated
pressures by 0.1119 pound, and that this is the measured frictional drag. The frictional drag
can also be computed from well-known formula for surface friction. Wieselsberger (Refer-
ence 19) gives, for example, ' B ;

D,=00q (26)

as the equation for the frictional drag of a plane whose total washed area is 0. In this equation

C;=0.0375 (LLV)N
where L is measured along stream, and V is the stream speed. Writing 0 =2L for 1-foot length
of plane, and ¢=4%p V% equation (26) becomes
D;=0.0375 ppIsLos )1
D,= KL &y 27)
where D, is the frictional drag per foot run and K=0.0375 p*®,

Since one keeps only the downstream component of the tangential friction, the resultant
frictional drag over the strut surface is equal, quite approximately, to that over its median

or

plane, when the tangential §peeds are the same at equal distances from the leading edge. One

¢ This method is due to Zahm, Reference 17,
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has then to apply equation (27) only to the strut median plane, using for L the distance from L
the entering edge and for ¥ the surface speed past the element of strut surface, whose projec- .

tion on the planeis dZ. From equation (6) the actual surface speed past the strutis V= VP~ 1, o
where p, is the measured pressure and U,=1. Let V=f(L) as plotted in Figure 11. Then -

equation (27) becomes, for L in feet,

EXperimental e e — —

Theoreftical

g f I ; ; t t f ; ! }
Strut width in inches, L

Fiaure 11.—Experimental and theoretical afr speeds over surface of United
States Navy No. 2 strut for unlt stream speed

Dy= K083 -
or —
dD,= K[0.85 L3718 [+ 1.85 LO85fe85£" d [} @7
where f/ is the slope of the curve V=f(L). Then
D,= E[0.85 f L~*f18d L+1.85 f L0885 d L]
or
D,= K[+ 1] (28)
The integrals I; and I, were graphically integrated from curves of L1485 versus L (fig. 12), L
the data for which is found in Table X. The value of I; and I; are found to be 7,=1.343,
= 0.2 and
20+
/.64
r2+
.84
24
E‘l Struf widifr i feef, L
No —
i 3 4 5 6 .7 &8
- g+
-8+
_/_2-_
-761

F1aURx 12.—~Curves of V1.8{I81 versus strut width for unlt.stream
gpeed. Areas under (1) and (2) give I; and Iy in equation 26

I;+1,=1.055
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Since the integration was carried through for a unit stream speed, the total frictional drag at
88 feet per second is
= K(1.055) (88"”)'

Using in K the values p=0.00237 and »*1¥=0.2711,

D;=0.1006.
This value compares satisfactorily with
D,=0.1119

found as the excess of total drag over pressural drag, both values being pounds per fsot run
at 60 miles per hour.
We have found, furthermore, that the measured pomt pressures an«. the computed surface

D=-D,+D,=-U.0629+ 0.1006 =0.1635 1b./tt.,
which is about 6 per cent less than the actual measured drag,

D =0.1748 Ib./ft.
. CONCLUSIONS

The theoretical flow past symmetrical forms.of predetermined shape can be rigorously
solved by use of von Karman’s adaptation of Rankme s theory, but not yet by Joukowski’s
theory or any of its extensions.

Using the empirical United States Navy Number 2 strut as the predetermined shape, the
pressures about a very close approximation from the Joukowski theory and about the exact form
from the Rankine theory agree within the precision of the computations. While agreement
between the theories was to be expected, still it is reassuring to have two theoretical treatments,
which are so widely different as these in their mathematical premises and developments, to
finally give the same results for an actual body, especially since the body, being empirical,
allowed no advantage to either.

The frictionsl resistance, determined from experiment, agrees, for the strut studied, within
10 per cent with that computed from the experimental surface speeds, and would agree still
better with that computed from the theorefical surface speeds. Also the total resistance as
measured agrees within 6 per cent with that computed from experimental surface pressure and
friction. These agreements are rather better than one should expect, considering the fact that
some of the quantities are small-order residues, and probably can not be taken as indicating
the accuracy of such anslyses in general. They tend to show, however, that the parts of the
whole drag experienced by a body moving through & real fluid can be fully accounted for and
accurately calculated from surface pressure and friction, granting sufficiently accurate experi-
mental measurements of surface pressure.
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TABLE 1
Constants ¢, in Equations 1 and 2
1 3 4 5 s 7’ 8 9 10 1~ 12 13 Oy
+ + 4 =4 + 4 -+ =+ + + -+ -+ +
1. 000 1. 000 1. 000 1. 0600 1. 000 1. 000 1. 0600 1. 000 1.000 © 1 000 1. 000 1. 000 L 000 0
;— A + s A+ ] R B T + 1.+ o+ .+ + +
1571 § 1039 | .7045 | /4520 | .2761 | .1684¢ | .0969 | .0666° | - .0507'‘|" .0409 | .0373 | |.0343 | .0336.) - 4 273
=+ + -+ + .+ + -+ + -+ +- ' + + + -+
1. 893 1. 571 1. 249 . 8761 . 5406 . 3217 . 1801 . 1219 | . 0921 .0740 | .0674 . 0619 . . 0603 7. 540
+ T =+ + + - + 4+ . -+ - + -+ +
] 2,047 1. 823 1. 571 1.201 | . 7703 . 4516 . 2446 . 1635 . 1225 « 0080 . 0891 . 0816. . 0793 9. 739
1T o+ 1. + +- —g + + -+ + + 1+ . -+ |- + + +
2. 201 2 051 1. 873 1.571 ] 1.090 . .8850 . 3302 . 2147 . 1588 . 1287 - . 1187 . 1038 | . 1012 12. 064
+ + )+ .+ + -+ + -+ + + + + ; =+ .
2. 364 2. 274 | 2,167 1. 972 1. 571, L9750 | .4741 | .2938 . 2113 . 1646 : . 1481 L1347 | L1311 14. 828
+ + - 4 + . -+ 5 ! +- + + -+ + + ; + +
2. 539 2.489 | 2432 -] :2.328 2. 098 1.571 - | .74238 ! <4177 . 2845 . . 2148 . 1914 1722 i - 1671 17. 279
-+ + + + + 4+ + + 4+ + + 4+ +
2.737 | 2.715 .| 2,691 2. 649 2. 664 2.356 | L1571~ .4 .7534 | .4384 . 3031 .2618 1 .2301 . 2218 18. 849
A + . + - + -+ -+ + -+ A+ 4+ -+ | R + 1 4+
2. 863 2,852 | 2 840 2.821 | 2.783 2, 701 2.40t | 1571 ! .7400 L4282 |- .3502 | .2055 | .2814 18. 847
+ + f + A+ + . -+ + -+ + + + ' 4+ + 4
2,903 [ 2967 2952 | 2942 | 2925 2. 890 2780 | 2.494 . { LB71 | .6478 : . 4672 . 3616 - . 3373 15. 206 |
‘ + + . + R -+ + 4+ ] 4+ 4 + + 188 ) + + :
o -3. 039 - 3, 037 ;1 8.034: }.8:080, .8,022 [k 3.007 .. 2967 . | 2.;882 i 2653 .1 L5871 .  .8153 . . 5 . .4307 10. 681 '
L TR S B SR, S S A 2 fr‘ e I l SIER SN P S B B S (Y S SO L » 551,'4 3 -‘,'-'q;-- KRy
3.076 1 .8.074 {3,072 | 3070 } 3.066 .[ 3057 . 3085 | 2003 [ 2897 " "2.498 '] 1571 " 7 .6434° 7. . 5101 [ 7.540 1
+ + + 1+ T + + + + 4+ 4 + +
3113 [ 3.112.713. 112 7 3. 111 8.109 1 3.106 | 3.097 .| 3.082 [ 3.053 . ; 2. 965 J 2. 799 L q71 . .8506 |° 3581
: - .

=
2.

44!
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TABLE II
Pressure and velocity over the separation surface whose form is the Navy No. 2 strut
; Polnt p z r Ty # (1tu,)t L . ot p=l—gt
| o] o 0 —~1.000 | 0 0 o. .| o +1.000
b1 . 200 . 680 —.834 | +.488 +.184 | +.238 +. 372 +. 628
L2 .600 | 1200 —817 | +.724 +.486 | +.524 +. 990 +. 010
| 3 1. 000 L 251 —.069 | +.680 +.868 | +.462 | +1.330 —.880
| 4 | ~1L600 1 918 +.126 | +.588 | +1.264 | +.346 | +1.610 —. 610
5 2. 800 2. 360 +.279 | +.452 | +1.636 | +.204 | +1.840 —. 840
\ 8 4. 200 2. 751 +.366 | 4+.211 | +1.839 | +.044 | 1883 —. 883
7 7.200 | -3.000 4+.331 | 4+.045 | +L772 | +.002 | +1.774 —. 774
i 8 | 10400 2920 | +.279 | —.118 | -+1.638 | +.013 | +1.650 —. 450
[ 9 | 13.600 2. 418 +.178 | — 272 | +1.388 | +.074 | +1.462 —. 462
| 10 | 16.800 1. 700 +.109 | —.243 | +1.230 | +.059 | 1289 —. 989
11 | 18 400 1 202 —.044 | —. 468 +.913 | +.219 | +1.132 —.132
] 12 | 20000 - 570 — 128 | —. o098 +.760 | +.010 +. 770 +. 230
TABLE III

The z and y coordinates of the Joukowski strut, transformed from the circle a=2.00 centered at £=—0.20, by
equations 10, when the map cirele is b=1.48

Navy No. 2 strut

, Point Round eylinder Foukowski strut Per cent o£'
' » £ ] z ¥ z y error fn y
0 I —2200 0 —3.196 o . —38. 196 0 . 0

1, —2170 +. 347 —3. 154 4. 190 —8. 154 +. 186 +. 4

2 . —2.079 +. 684 —3. 030 +. 871 —8. 030 +. 361 +.9

3 —1. 932 4 1. 000 —2. 826 +. 535 =2. 826 +. 529 +.6

4 —1 732 +1. 286 —2. 547 +. 680 —2. 547 -+. 680 1]

5 —1. 486 -+ 1. 532 —2. 200 +. 795 -2 200 +. 793 +.2

- 6 —1.200 +1. 732 —1..792 +. 877 —1.792 +. 877 0
N 4 —. 719 +1. 932 — L1 089 +. 936 —1. 089 1. 936 0
v 8 —. 200 +2. 000 -+. 308 4. 916 —. 308 +. 922 —. 6
9 +.319 +1 932 +. 501 +. 827 +. 501 +. 835 —-. 9
I 10 +. +1.732 +1. 281 +. 690 +1. 281 +. 701 —-12
11 +1. 086 -1 532 +1. 760 4. 582 +1. 760 4. 594 —1l4
- 12 +1.332 +1. 286 +2. 183 4. 464 +2. 183 +. 476 —13
i 13 41532 +1. 0600 +2. 534 +. 345 +-2. 534 +-. 357 —1.3
;14 +1. 679 +. 684 +2.798 +. 228 42 708 . 258 —a.2
16 +1. 800 0 +38.017 i} +38.017 +. 176 —18.7

TABLE IV

Values of g, pe, 1, 8 from equation 22 giving surfaces of constant speed near the round eylinder, from gr=0.250
to ¢r=1.000, omitting qr=1.118 to qr=1.750

I fr Pr T ] qf pr T ' ’
F Q r - . a I
|
0. 250 0. 937 2.00 7 11 0. 707 0. 500 2.00 | 20 50
| 2.05 7 15 225 ' 23 20
i - 210 1 6 59 250 | 23 10
; 2.15 6 31 275 | 28 20
\ 2. 20 5 43 3.00 [.19 20
2.25 4 26 8.25 |17 10
2.30 | 1 44 28.50 | 13 50
. 250 . 937 2.81 0o . 707 . 500 400 | O
. 500 . 750 2.00 | 14 29 . 866 . 250 2.00 | 25 4
2.10 | 15 2 2.25 | 28 10
2.20 | 14 49 2.50 | 29 30
2.30 | 14 81 2.756 | 31 30
2.40 | 13 39 3.00 | 31 20
2.50 | 12 81 3.26 [ 31 20
2.70 8 23 3.50 | 35 20
. 500 . 750 2.83 0 . 866 . 250 400 | 26 50
.760 |  .438 2.00 | 22 2 1. 000 0 2.00 | 30 ¢
2.25 | 23 55 2.50 | 35 40
2.50 | 24 17 3.00 | 38 35
2.75 | 23 4l 3.50 | 40 18
3.00 | 22 12 400 | 41 24
325 | 20 7 5.00 | 42 42
3.50 | 16 48 6.00 | 43 24
. 750 .438 400 0 1. 000 0 800 | 44 6
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Contour, velocity, and pressure values for the round cyclinder a=2.00 centered at {=—0.20 and for thecorre-
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TABLE V-a

sponding Joukowski strut when map cylinder is b=1.48

Contour, velocity, and pressure values for closely

surfaces near strut. ¢=0.03, 0.05, 0.10, 0.20, 0.50 omitted

: " Round eylinder Joukowskl strut
L - - : I L " ids _
" ) S T % i v kd LI R
Bq. 25 r Egq.14,1518 Eq 10 ! Eq1r | Eq.16 Eq. 6
g 0 —4,200 | +0.750 | 0 0.750 | —4.721 l 0 0.876 | 0.856 | 0. 287
0 O —8.200) 4.566 | O .556 | —3.884: 0 L7868 | 707 | . 500
0] 0| —2200, 0 0 0. | —8]196, 0 6471 0 -+1. 000
0 .347 | —2.170 | 4.060 | . 342 .347 | —8.1847 4. 190 .586 ; .692| 4.650
0 L6844 —2.070 | 1.234| 4-.643 L6841 —3.030 , +.371 . 688 go4 | -, 012
0] 1.000[ —1.932 +.500]| .860 1,000} —2.826 ; +.05637 .824 | 12183 —.472
0| 1286 | —1.732 ! +.826| +.985| 1.280 | —3 547 6 +.680 L9747 1320 —. 741
0| L5382 —1.486| 41.178 | -+.985 1,632 | —2-200, +.795 1,122 | 1866 | —.865
0| L732| —1.200 +1.500| +.877 17321 —1.792, +.877 1.261 | 1.374| —. 867 .
0] 1.932| —.719 ] 41.866 ) 4. 501 1,932 —1,090  +.936 1.429{ 1.861| —.719
012000 —.200 | 42 000 0 . 2,000 —-308.. 4.916 1.636 | 1.803 | —. 897
0] 19382 4-.319, 41.86| —. 501 1.932 | 4=501 +4.827 1.552 ! 1,245} —, 640
0} 1.782| +4.800| +1.5600 | —.867 1,732 | +1,281  ~ +.690 1,464 | 1.183| —.401
0} .L532| +1.086 | 41173} —:985 17632 | +L760 +.580 1,341 L 142} — 305
0| 1.286| +1.882| -.826 | —.985 1.286 | +2183 | +.464 1.168 | 1.101 | —.212
0! 1.000| +1.832| +.500| -—.867 1.000 | +2.535°, .346 .940 | 1.068 | —.110
0 .684 | +1.670 | 4.284| —.643 ] .684 | +Z-708 [ 228 . 700 .976 | +.046
o| 0 . 41800 O 1.0 0 +38.017, 0 .324} O + 1. 000
of 0 +2.806 | . 556 0 .556 | +3.582; O . 721 L7714 408
o O +3. 800 | . 750 0 L .T50 | 43761 0 . 848 .884 | +.218
TABLE V-b

raded streamlines, y=const. used to find constant spced

Round cylinder . Foukowski strut
" ¢ o ’ I v g % '3
"Eq.25 Eq. 14,15, 18 Eq. 10 Eq. 17 Eq.16 Eq.6
0.01 [ 0.05| +2155 | +0.280 | +0.081 | 0.281 | +3.171 | 4+0.026 | 0.530 | 0.531 | +0.718
.01 .06} —2. 566 | +.2801 —.031 .281 | —38.412 } +.033 . 512 . 560 | --.608
.01y 7. .10} +1.908 } +4.102 | 4-.086 .133 | +8.051 | +.040 . 406 .32 | +4.892
.01 .10 | —2.803 | +4.102 | —.088 .133 | —8.283 | +.069 . 501 . 225 | =940
.01 .16} +1.865 | -.076 | +.136 .155 | +8.032 | 4. 066 . 306 .892 | +4.846
.01 16| —2.266 | +.076 | —. 135 .1556 | —3.228 | +.086 . 581 . 2687 | +.929
.01 .20 41821 | +.048 ) . 190 .196 | 43,010 | 4. 104 . 390 L8503 | +.746
.01 S.201 —2.221 | +.049 | —. 190 .106 | —3.199 | 4. 168 . 572 . 343 | 4882
.01 .40 | 41786 | +4.101 | 877 .890| +2.933| +.143| .498! .784} - 386
.01, .40, —2,186 1 4.101 | —.377 .890 | —8.166 § -.222 . 808 .845 | . 584
.01 .70 | 4+1.689 | +.258 ¢ +.642 .690 | +2.796 | +.241 . 709 972 | +4.0564
.01 J70 1 —2,089 | 4.253 | —.642 .690 | —3.032 | +.384 . 695 .9021 4,016
.01} 1.00| +1.544! --.500; -.844 .971 | +2.543 | 4. 352 .943 | 1,020 —.059.
.01 100 | —1.944 | +-.500 | . 844 .971 | —2.835 | . 541 .823 1 1.180 | —.382
.01 .50} +1.183 | +1 117} 4.9808 ) 1.490| +4-1.836| +.570| 1.813 | 1.135] —.288
.01} . L.B0O| —1.583| +1.117| —.986 | 1.490; —2.263| -4.786 | 1.098 | 1.857 ) —. 842
.01 200 — 080 41.985| +1.390 | 19082 '4.002| +.008| 1.546| 1.282| —.643
.01 200 —.840| +1.985 | —1.390 | 1.982) —.521 | +.986 | 1.408 | 1.328| —.763
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¥=0.70, 1.05, 1.40, 1.75,

Round cylinder . Joukowski strut
: - |
¥ B u 'f 1, ! z ¥ {g—f_ [ P
Bq.28 Eq. 14, 15, 18 Lo Eq. 10 Eq. 17 EqQ.16 Eq.6
0.35 0.35 | + 1.000 | O 1. 000 [ + +0. 350 0| I1.000
.35 .85 — 1.000 | O 1000 | — _+. 350 0| 1000
35 .50 1 +3.417| +.711| +.081 L7168 | 4044 | +. 408 . 826 .867 | +.248
.36 .50 —3.817| +.711| —.081 716 | —4 381 { 4. 426 . 858 .834 1 1.804
.85 .70 +2.540 | +.561} . 240 610 | +3.842 | +.470 | .782 .834 1 4-.304
.35 .70 | —2.940 | 4.561§ —.240 .610 [ —3.645 ; --.532 . 786 LT +. 897
.35 .80 | +2.844 | 4.530 | +.232; .61l | 43181 | +.514; .750 .815 ] -.335
I .3 .80 | —2.744 ] 4.539| —.232 .611 ! —3 +.58 | .787 .7T7T | +. 396
| -35 .00} +2070 | +.561 | +.479; .731} +29287 +.586 . 810 .003 | +.185
i .35 100 | —2.470 | +.561 | —.479 .731 ¢ —3.232 | +.692 . 807 .06 | +.179
P .85 L.25]| +1.798 | +.685| .847 L0371 +2.619 | --.679 . 933 .93 ¢ +.013
I .35 125 —2.198 | +.685 ] —.647 .037 | —2.951 | -+.823 L876 | 1071 | —.145
! .85 1.5 | +1.528 | +.804 | +.759| 1173 | +2.253 | +.78L | 1.102| L0684 | —.133
, .35 1.50] —1.9231 +4.804| —.759, L1783 —2.631 | +.047 .963 | 1.218] —. 483
| -3 .76 +1.192 | +1L 180} +.779 ! L 411 +1.774 | +.805! 1.263 | L 118| —.248
.35 1.75| —1.502 | +1.180 | —. 779 | 1411 —2. 215 | +1.085 | “1.098 [ 1.280 , —. @65
r .35 200 4.721| 41.536 | -+.627, 1.659; +1L070 | +1.08%; 1407 | 1.179| —. 390
i .85 2.00 | —1.121 | +1536 | —.627 | 1.6859 | —1.588 | +1 167 | 1.268 | 1.308| —.7I2
i.85 210 | +.424 | +1.608 | +.456 % L7658 | +.627 | +1.098 | 1.452 | 1.211 . —. 466
i .35 2,10 —.824] +1.608| —. 455 { 1. 758 | —~L179 | +1.196") 1.347| 1.304| —. 702
i . : ; _ -
TABLE VI-a
Constant speed contours about the Joukowski strut
Bow Stern I Abreast
[ 4 P - *‘ [ § P
~ z ! ¥y z ¥ f z 4
| . ]
1 .
.25 +0.987{ —3.188 ] 0.075{ +8.012 0. 013 : 1.25] —0.563 | —2 800 Q570
—3.237 | .077 | +8.050 0 : —2. 750 . 600
—3.315 - 050 ! —2.700 | . 860
.26 +.937| —3. 330 i . —2.640 | .730
. 1
.50 +. 78 See Table VI-b : —2. 550 . 830
1
.75 4.438 | —38.125 0.250 | -2 960 [ 0.125 ; —2.380 | 1.015
—3. 158 L8156 | +43.025 . 800 , —2.152 | 1180
—3. 200 .862 | +3.125 . 840 | - —.800 | 1.330
—3. 300 . 450 | 8340 .300 —. 165 | 1175
—3. 470 .520 ] +3.520 . 065 +.050 | 1.070
—3. 670 .520 | +3. 525 0 +. 270 . 035
—3. 890 . 412 ! +. 875 . 870
—4. 000 . 250 ! 1.25| -—.568} 4.412| .835
—4. 040 . 140 ) _
.75 +.438 | —4 050 0 |
' [
1. 00 0 —3.025 .380 | +2 750 . 250
—3. 025 L4401 +2. 680 . 850 |
—3. 030 .510 | -+2 637 . 440 |
—3. 048 810 | +2 600 . 525 ;
—3.080 TT5 | -2 570 . 692 ¢
—3.130 .910 | +2 560 .845 |
—3. 200 1080 --2.570 1.048 :
—3. 860 1.400 | 42660 1. 876 ;
. —3. 535 1.730 | +2.800 1.720 .
1. 00 0 —3. 730 2.052 | +2 975 2. 030 i

"
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TABLE VI-b™ " _
Constant pressure contours about Joukowski strut
- Bow Stern s Abreast i
p [ - P ¢
z ¥ z v z [
+0.75 | 050" —3.175| 0.160| +3.008| 0.080| —0.25| 1 118 —~2.940 | 0. 451
| =3 180 | ..170| -8 033 . 060 —2. 900 . 625
- —3. 260 .210 | +8.108 . _0_6% —2.730 . 880
w3, 470 .130 | +3.185 . 030 —2.790 | 1.020
. +.76| .50 | —=3.525| O +38: 150 ~2.725 | 1.240
+.50| 707 —8180| .240| +2.976| .o¢5 —2.600 | 1600
_ 1 =8 170 200 | +3.000 . 170 +1. 975 . 527
~3.230 | .380| -3 050 248 i +1. 830 . 750
. 3.830 1. ..875| +3850 ! .175 =Tt 41745 . 900
8. 775 .200 | +3.395 . 075 _ 41.680 | 1.030
8. 880 140 +3.410) 0 | —.25] ‘Lus| +1210] 1635
—3.900 . 050 el —.50! 1925 —289s . 536
+. 50 .707 | —3.900]| o - 770 —2.700 . 700
+.25| .868| =3.085 .310 | 42000 P . 175 —2,480 | 1.000
| ~=8.105 .370 | 42918 .250 —2,080 [ 1370
—3. 130 . 425 | - +2.930 . Zzgg —2.240 | 1480
—8.190 825 | +2.985 | . . 400 +.135 | 1.260
3,205 .652 | +3.045! "l 53k , . 4.330 | 1.120
—3. 490 .800 | +3.3751. . .67 | —.50| .1.226| - 750 . 790
—=3,050 | 900 | +380] .e6i8;, —.75| 1323 —2.500] .606
4. 310 .851| +4180 o ] —2.320 . 830
‘ 4. 700 . 580 T - —2. 000 . 975
—4. 776 . 420 : —2.230| 1075
+.25| .866] —480| 0 - —.820| 1.025
0 1. 00 ' _ See Table VI—a, | =wsl Lses| —.ses . 930
TABLE VII -

Resistance values for Navy No. 2, 5-foot strut with shielded ends at various air speeds and zero pitch and yaw

sAir- Nagtce per Dy O=

£Ry
sf%;d H foot & | (tXfijsec) | —rph
20 | 0.0240 7.3¢ | 0.0940
30 . 0472 11. 00 . 0821
40 0796 14.67 | .0779
50 1206 18.34 | 0755
80 1748 22, 00| . 0781

R=resistance per foot lenzth of strut, 1b.
Dw=strut thickness in inches,
=ptrut thickness in feet.
'=shape coeficient.
V=alr speed in miles per hour.
Vi=alr speed in feet per second.
#/7=0.00237 slug/feet.

H

¢ wv
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TABLE VIII R
Point pressure in terms of nose pressure, pfps, & va&rious wind speeds for Navy No. 2 struf—zero of piteh
and yaw
Pressure hole . Point pressure p/pa
! Coordinates . Wind speed in M. P. H.
Num-
ber .
z y 2 30 40 50 60
1 0 0. 41 000 +0. 998 + 1004 +1. 000 -+ 1. 600 ) o
2 . 100 . 370 <. 608 +. 602 4. 601 +. 604 +. 600 . —
3 . 320 . 620 . +. 068 +. 066 +.071 |- +4.068 +. 066 ol
4 . 540 . 830 —. 832 —. 848 —. 845 —. 850 —. 856 . ) e
5 . 880 1. 000 —. 612 —. 608 —. 593 —. 604 —. 594 T e
6 1. 300 1. 170 .—.T04 —.712 || —.695 -, 708 —. 700 e
7 2.100 1. 370 —. 780 —. 784 —. 762 —. 768 —. 766 - :
8 3. 640 1. 500 —. 688 =, 698 —. 667 —. 668 —. 662 | iininsian
9 5. 250 1. 460 —. 586 —. 586 —. B70 —. 566 —. 552 L i
10 6. 800 1. 210 —. 414 —. 408 —. 386 —. 386 —. 380 T
11 8. 40Q . 850 —.178 —. 176 —. 158 —. 152 —. 146 R
12 9. 220 . 580 —. 026 —. 010 +4-. 016 +.022 +. 042 . Te Al
13 9.950 | .300 o142 +. 154 +.158 +. 150 +. 146 R —
14 10. 330 . 100 . 178 +.172 +.170 +. 168 +4-. 162 _
p =Doint pressure at any
::.-spol.n.t pressure at nnse-HpU.! i
TABLE IX o

Along-siream forces per foot run of Navy No. 2 strut expressed both in pounds and in per cent of total drag for
theory and experiment at 60 miles per hour

Al Downsiream U Pressure I Friction Toh;l |
MOP.H 0, 8 p: e 2D.5E
-*+=4  Push l Buction [ Total Py Push Suetion _Totatl Py At ' ' |
Pounds per foot run—theory :

i ) 3
60 [ 0.4151 l 0. 4109 i 0. 8260 | 0.2010 i 0.6250 | . 8260 0 [ ¢ - 0 ;
Pounds per foot run—experiment :

I

80 | 0.4230 , 0.2762 | 0.7012 | 0.0893

05200 | o.easz! o 052'9: 0.1118 | 0. 1748

|

Per cent of total drag—experfment

60 242 159__|E 401 51 E 314 365 36 { 64 100 ‘
i
Dragrax I -
Downstreom pust a area aba Upsfream push & area efo
Lbowntstream suction a areo ced Upstrean sucition a area bed -

Tofal area={obo +cad)-(eforbebi=abgef-gcg o - o R : =

arm
Pa‘;?fon

2 , SNy

5
]
!

SRR '8 S § 3
Observed pressure o (inches of water?
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TABLE X

Values of absoisse, air speeds, and accelerations used in evaluating I; and I; in Equation 18

Measured |

. - - AV, 185 0.855¢
Dl | el | vesops | vouepis | pa | BHES L gper | peiple | e
speed V, . . SRR (falred) I I
~ - - Sl = - - o
0 0 .: 0 o L0 o o '
. 0208 920 |- .930 | ..885 , .0873 | 1, %3 +14.40 | +40.924 | 1308
L0417 1 L1256 | L1056 | 1.248 |, .0671 1, 609 +6. 288 +.862 | +1.700
.0833 | L276 | 1.233 | 1.573 @ .1210 | L 453 +1.675° ] +.462 | 41.043
L1250 | 1.816.| 1.262 } '1.66l ", .1708 | 1,366 +. 624 +.249 | +1.930
L1666 | 1830 | 1274 | 1.605 |, .218] 1. 309 +. 156 +.080 .} --1.886
L2083 | L3307| 1.274 | 1.605 . .2635 |' 1 263 —. 108 —. 087 | +1.820
.2500 ., L3818 ) 1265671 1.666 @ ,8079 ; 1.232 —. 222 —. 160 | +1.744
L2916 ' 1208 ¢ 1.248 | 1621 , .3506 | 1.203 —. 270 —-.2190 | 41657
.8333 | 1.282 | 14285 | 1.584 . .3032 | 1,179 —. 202 —.262 | --1.587
.8748 | '1.268 | 1224 | LBb62 | .4345 | 1,188 —. 204 —. 289 +1. 528
L4168 | L2567, 1214 | 1524 L4749 | 1139 —.820 | —.341 +1 476
. 4585 1242 |. 1.208 | L 493 . 5152 1.123 —. 887 —. 444 | +1.425
L5000 | 1.220 : 1184 | 1444 | .5546 | 1.113 —. 511 —. 621 +1. 866
. 5415 1194 | L1438 T 1.388 . 5930 1. 094 —. 622 —. 794 | +1.291
.5832 | 1,165 1 1.139 | 1 326 .6321 | L1084 -7 | =047 | +1.222
. 6250 1.185 ' 1.113 | 1.264 .6698 | 1071 —.766 | —1.087 41,151
.6666 | 1.102 | 1.088 ! 1.187 . 7083 1, 082 —.788 | —1.122 | 41081
. 7082 1067 | 1057 | 1.127 .7460 |- L 052 —. 826 —~1205 [ ---1.008
.7500 | 1.016 | 1.014 | 1030 7828 | 1.048 —-.871 ! —L279 | 19018
. 7915 1956 | .961. , .918 L8185 | 1084 —. 780 —1. 138 +. 807
. 8333 L9207 930 . .R&5 .8566 | 1.098 —. 474 —. 698 +. 747
. 8755 L9161 7. 929 j .850 | .8930. | I.120 —. 030 —. 046 +. 787




